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Abstract: Biosignals arrive a computer system either as a continuous data stream 
from a sensory input, or as a section of finite length of such a stream recorded on 
a storage device. Their analysis rests on measurement results gained from 
recognized waves like duration and amplitude. It is a characteristic feature of 
biosignals that they are overlapped with noise and other kinds of distortions. 
Although the signal quality can be improved up to a certain degree by filtering, 
always residue distortions will remain. A measurement procedure must therefore 
accepts perturbations. The paper deals with the consequences which follow from 
this requirement using the ECG measurement as guideline. 

One of the main problem – the definition of the quantities to be measured – is 
illustrated with experiences made in two historical ECG projects. The deficiencies 
of these projects are discussed and it is shown that they can be overcome by the 
interval representation of measurements. In this representation the definition of a 
quantity does not aim at its true value, rather the goal is to find as accurate as 
possible a lower and upper bound for it. Definitions for wave parameters are given 
and their performance is tested by simulations using a noise overlapping in the 
range of a signal-to-noise ration between 5 and 12 dB. The test results show that it 
is possible to obtain true lower and upper bounds for the durations and amplitudes 
of waves with quite simple means. 
 

                                                           
1 Formerly version: Correct Definition of ECG Wave Onset and Offset. In: HERMANN K. WOLF & 
PETER W. MACFARLANE (eds.): Optimization of Computer ECG Processing. Proceedings of the IFIP 
TC 4 Working Conference on Optimization of Computer ECG Processing, Halifax 1979. North-Holland 
Publishing Company Amsterdam/New York/Oxford 1980, p. 159-164. That version was supported by 
Bundesministerium für Forschung und Technologie Projekt DVM 125. 

Introduction 

A lead of an electrocardiogram (ECG) represents a time-dependent 
biosignal in which an electrical potential difference is plotted against 
time (Figure 1). The potential difference is registered with electrodes 
located at different positions of the body surface, e.g. at the 
extremities; it originates from the electrical field generated by de- 
and repolarization processes of the heart muscles. The ECG lead 
shows typical wave forms which can be assigned to the de-, or 
repolarization of special heart regions (Figure 1). 
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Figure 1: Idealized ECG lead for one heart cycle. The P wave indicates the atrium depolarization, the 
QRS complex indicates the ventricle depolarization, and the T wave the ventricle repolarization; the U 
wave is still a subject of debate with respect to its origin and clinical importance.2

 

The computer processing of electrocardiograms starts with a first 
pattern recognition task for identifying signal deflections. The next 
step is a measurement procedure in which the deflections’ onsets 
and offsets as well as their amplitudes are determined. Based on 
these results as next a decision is made, whether a deflection is in 
fact an ECG wave or not. It follows another pattern recognition task 
                                                           
2 GUPTA et al. (2005). 



for extracting important information from abnormal or striking wave 
forms (Figure 2). Both the measurement results and the results of the 
wave form analysis are then the basis for the final interpretation of 
the ECG lead(s) under study.3
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Figure 2: Abnormal QRS complex in case of a left bundle branch block recognizable by its coarse wave 
form and by its extended duration. 

 
 

Validation Problems for ECG Systems 

Systems for a computerized biosignal analysis have been 
developed under the assumption that they work faster, more 
precisely, and more reliably than human observers. But before such 
systems can be applied to the reality, their results must be proved 
extreme carefully, especially if – as in case of the ECG analysis – 
the results are used for recognizing heart diseases so that a 
misinterpretation may have severe consequences for the persons 
concerned. 

                                                           
                                                          

3 In this short outline of an automated ECG analysis all complications are skipped, e.g., those done by an 
arrhythmia. 

At this point starts a bundle of serious problems around the 
question: How to define a method with which computer systems can 
be tested? These problems are not only restricted to the ECG 
analysis, rather they appear in all systems making decisions on the 
basis of measurement and pattern recognition. 

From the physician's point of view it is correct to say that the 
quality of an ECG system must be judged by the quality of its 
diagnoses. Thus, attempts are made to represent the degree of 
agreement of the computer diagnosis with the clinical one by 
numerical quality measures like sensitivity, specificity, accuracy, 
reliability, validity and so on.4 However, the presence of so many 
measures for one and the same thing suggests that none of them 
fulfils its task; none of them provides a unique quality measure. This 
renders optimization close to impossible, since optimization requires 
a unique aim. 

The reason for the great diversity of concepts seems to be that 
attempts are made to reduce a multi-dimensional phenomenon to a 
one-dimensional quantity. But, as is known, this can be done in 
many ways. It seems that extensions of this theoretical device – like, 
for example, inclusion of statistical decision theory or information 
theory, as suggested by RAUTAHARJU et al.5 – would not be very 
successful. As in the case of the other approaches this would imply a 
special weighting of the single components. The strategy, therefore, 
must be to reduce the multi-dimensionality. 
 

 
4 BAILEY et al. (1974); CACERES & HOCHBERG (1970); LAWRENCE (1977); RAUTAHARJU et al. 
(1976); RAUTAHARJU & SMETS (1979). 
5 RAUTAHARJU et al. (1976). 
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Scope of the Paper 

As mentioned above, automated ECG processing consists of two 
different parts: measurement and classification. Thus, it suggests 
itself to treat the accuracy problems of both parts separately. This 
paper is based on the hypothesis that we cannot consider the quality 
of diagnosis before clarifying the problems of measurement 
accuracy. In other words, we first have to set up an accuracy 
measure for the measurements; thereafter we must look for an 
accuracy measure for the classification, which should be a function 
of the measurement accuracy. 

In the following we restrict ourselves to measurement problems. 
We start with a short characteristic of two ECG standardization 
activities and discuss the problems they remain. As a solution of 
these problems we introduce the interval representation of 
measurement results. Some wave parameters are defined in order to 
illustrate, how this representation can be used for establishing 
measurable quantities. We test our definitions by simulating 
measurement procedures with noised signals and summarize in the 
final section the advantages of the interval approach. 
 
 

CSE Project 

It seems to be self-evident to use for validating purposes a 
reference library of well documented ECG signals with manually 
certified results as a standard for the computer systems, assuming 
that they will work correctly, if they can replicate these results. 

This strategy was followed in the so-called CSE project: To 
establish such a reference library, a large international project was 
launched to develop "Common Standards for Quantitative 

Electrocardiography (CSE)".6 Different techniques are used by the 
computer programs for measurement and interpretation. Therefore, 
its main objectives were to reduce the wide variation in wave 
measurements obtained by ECG computer programs (see Figure 3), 
and the assessment and improvement of their diagnostic 
classification. A comprehensive reviewing schemes have been 
devised for the visual and computer analysis. The task was 
performed by a board of cardiologists and by programs developed by 
university research groups and by industry. 
 
 

QRS Duration

Frequency 
of Occurrence

 
Figure 3: Distributions of the QRS duration for one and the same patient measured with four different 
commercial ECG processing systems.7 This is a surprising result because normally the determination of 
the QRS duration is counted among the easier tasks. 

 
 

                                                           
6 Sponsored by the European Commission in the field of medical and public health research; s.WILLEMS 
et al. (1990). 
7 From NEUBERT et al. (1980), p. 432. 
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Standardization Project of the PTB 

There was also launched a standardization project at the 
Physikalisch-Technische Bundesanstalt (PTB), Institute Berlin.8 Its 
intentions are very similar to those which initiate the CSE project, 
however, in opposite to the latter, the theoretical foundation of the 
test methods is stressed. The approach rests on the assumption that 
the definition of ECG wave parameters should be based on optimum 
ECG recordings. Therefore, an appropriate hardware has been 
developed which represents a standard device for signal sources. It 
yields real ECG leads in a high resolution quality at a low noise 
level.9

Signals generated with the standard device can be superposed with 
artificial interferences like noise and base line drifts in order to test 
the system’s stability against those inferences. This procedure 
allows an error assessment by measuring the wave parameters before 
and after signal distortion. 

It is assumed that the theory seems to be enough advanced to allow 
the calculation of a model ECG including the electrophysiological 
processes and their physical appearance. Thus, a special advantage 
of having available high quality ECG signals is that with them de- 
and repolarization defects of specific heart muscle regions can be 
simulated, e.g. for studying the capacitive and resistive current in 
various tissues and anisotropic conductivity effects.10 This feature 
makes it possible to decide whether a small deflection is a small 
ECG wave or an artifact. 
 

                                                           
8 NEUBERT et al. (1980). 
9 TEPPNER et al. (1987), p. 436f. 
10 NEUBERT et al. (1980), p. 434. 

Remaining Problems 

Both the PTB project with its focus on solving measurement 
problems, and the deserving CSE project, exemplary for all alike 
computerized tasks and unique in its effort and in its careful 
realization, have left some unresolved problems: (i) Defining 
measurement requirements and establishing a basic library are only 
necessary, but not also sufficient actions, i.e., they are needed, 
however they do not guarantee a success; the question arises how to 
justify them? (ii) Definitions of the quantities are missing which take 
into account the presence of noise, and with which the program 
developer can assess the performance of his system’s results. (iii) 
There is a historical burden in the sense that all the clinical 
knowledge stored in the textbooks was obtained by manual 
measurements. The computerized analysis, however, provides new 
chances for operations not manually executable; they open new 
fields of experience, but up to now less expert knowledge exists 
about them. Thus, there is the risk that the computer systems are 
adapted to the traditional knowledge and that their possibilities are 
left unused at long sight. 

We now look at some aspects of these remaining problems in more 
detail. 
 
 
The Problem of Finding an Adequate Standard 

For measurements we need a standard procedure to provide us 
with correct results. Only then can we evaluate an algorithm's 
accuracy in terms of the distance between its results and the 
supposedly correct ones. But this is a problematical method. To 
check the accuracy of a standard, another still more accurate 
standard is needed and so on. 
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In checking automated ECG measurements it is customary to 
employ manual measurements by a human observer (e.g. the 
program developer) as a standard. However, it turned out very 
quickly that there appear both inter-observer and intra-observer 
variability.11 The reason is clear: the determination, e.g. of a wave 
duration, is a measurement done by a person as measurement device. 
All real measurements are subject of measurement errors so that 
differences in the measurement results are a natural consequence. 

In the CSE project experienced cardiologists are consulted for 
doing this task. It is assumed that they do the right. The variability 
was reduced by an interactive reviewing process. Each of the four 
rounds of the Delphi type reviewing process led to smaller 
variances. However, the determination of these quantities depends 
above all on the visual ability, i.e. no special medical  knowledge is 
required to identify a deflection of a curve. If the measuring results 
of human observers should be used as standard, then the question 
arise: How exact are such visual measurements? 
 
The Problem of Finite Resolution 

It seems to be intuitively clear that, e.g. the onset of a wave is just 
that point, the curve leaves the base line; and this occurrence should 
be clearly visible. However, this argument applies only in part, since 
of what can be seen depends not only on the skill of the human eye, 
but also on the resolution of the ECG plot. 

As investigations at our institute12 have shown, the P wave 
duration determined by the physician during routine work can be so 
inaccurate that it becomes useless in detecting obvious errors in the 

                                                           
11 WILLEMS et al. (1983), p. 51. 
12 Institute for Medical Informatics, Gießen University, Germany. 

program. The main reason is the unsatisfactory resolution of the 
ECG plot (see Figure 4). 
 

 
Figure 4: Idealized P wave with a positive amplitude. P  marks its “true” duration 
measured at a high resolution. In a real ECG plot the resolution is lower; there can be 
identified a resolution threshold A, i.e. the minimal distance that a curve must depart 
from the baseline in order to be recognized visually by an observer as a deflection 
onset or offset. In the figure above a human observer can only see the deflection above 
the dotted line. Due to this finite resolution, the manually determined duration PHV  
is only about 50% of the exact duration P. 

 

The only way to improve the resolution of an ECG plot is to 
enlarge the scale. How should the scale be chosen in order to obtain 
the best possible resolution? 

Figure 5 sketches the error of manual measurements as a function 
of the ECG plot scale for different noise levels R (i.e., the mean 
deflection of the noise signal from the baseline). If R is low, the 
error is determined mainly by the resolution, and the error curve 
takes an asymptotic course (curve 1). As the noise level becomes 
higher, an enlargement of scale at first continues to cause a decrease 
of error, but then the error starts to increase once more. The 
magnified noise signal renders exact determination of the wave 
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onset and offset more and more doubtful, and there is an optimal 
scale which minimizes the error (curve 2). The higher the noise, the 
more the signal flattens and the optimal scale with minimal error 
decreases (curve 3). From this it follows that the best resolution for 
an observer depends on the noise level. 
 

 
Figure 5: Error of manual measurements as a function of the scale of the ECG plot for 
different noise levels (see the text for more details). 

 
 
The Problem of the Historical Burden 

The transition to a computerized ECG analysis should not mean 
that just those procedures are automated which were afore done by 
hand. Rather, the computerized measurement opens new chances 
with respect to accuracy and reliability of the measurement results, 
with respect to a nearly unlimited memory for storing case studies 
and ECG wave forms, and last but not least with respect to a high 
number of feature combinations for characterizing diagnostic 
findings. Thus, we have the situation that the computer systems 

could provide results for which no application is found in the 
textbooks. 

On the other side, ECG analysis has a long tradition at which a 
large amount of knowledge was gathered by means of manual 
analyses. This knowledge however, deposed in numerous textbooks, 
refers only to the striking wave forms whereas the meaning of the 
finer wave form variations is unknown. Often the opinion is held 
that such small variations have no clinical relevance. But this 
assertion was never proved systematically, it rests only on the 
experience with the textbooks in which such variations are not 
mentioned. It may be true that a unobtrusive wave form – considered 
for itself – has no importance, but this must not be true in 
combination with other (possibly also unobtrusive) features. There is 
the problem to combine the traditional knowledge with the results a 
computer system can extract from ECG leads. 

Up to now the potential provided by the computer analysis is left 
unused to a large extent. In order to utilize it, special methods and 
new quantities are needed with which the corresponding refined 
medical knowledge can be acquired. We skip this topic in the 
following considerations. 
 
The Problem of Different Measurement Practices 

Only that can be measured manually what was recognized, and it 
can be reached only that accuracy which is possible by means of the 
sensory perception and by means of the enabling instrumentation. 

A computer does not depend on these restriction: it is aware of 
each difference of two numbers, the small the difference may be, i.e. 
in principle a computer can be more exact than a human observer. 
From this it follows that visual measurement cannot be a reliable 
accuracy standard for automated measurements. Moreover, the 
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computer's power of resolution can far exceed that of a human 
observer, especially if the signal is filtered before wave recognition. 

For a computer system it seems to be, therefore, not a good 
strategy to come as close as possible to the manually measured 
results, because this would mean that the imperfectness of the 
manual measurement has to be replicated by the computer system. 
Doing so, one would not only give away the chance for a better 
result, but also the computer would be in an inferior position with 
respect to a human observer. 

On the other side manual results are needed for comparing them 
with the computer results. From it arise a conflict situation: on the 
one hand needed, on the other hand suitable only to a limited extent. 
However, there is no other procedure to replace visual measurement. 
It is an object of this paper to solve this conflict. 
 
The Problem of Missing Methods for the Program Developer 

Another problem left unresolved by the standardization projects is 
that methods are missing with which a program developer can 
determine the implication of his program modification. He is always 
confronted with the question: Given are two algorithms, which of 
them is the better one? The answer to this question requires clear 
measurement rules which include a definition of wave onset and 
offset. The quality of a system can be tested with a model library 
having standardized measurement results. But in case the computer 
results are pure, such a library is of little value for finding out a 
better approach. 

Consequences from the remaining problems 
What we need are clear definitions of the quantities which should 

be measured. These definitions must take into account the fact of 
signal inferences. If such definitions are available then the problem 
of finding an adequate standard and the problem of different 
measurement practices are eased, because both the human observers 
as well as the computer systems must follow them. The problem of 
finite resolution vanishes, because the signal interferences are 
incorporated in the definitions, and also the program developers is 
helped because computerized test methods can be derived from the 
definitions. 
 
 

Interval Representation of Measurement Results 

The difficulties described above arise from a flaw in the 
methodology: a quantity which is known only approximately is 
represented as a number, that is, as a unique mathematical object. 
Therefore we will change the mathematical representation of a 
measurement. Henceforth we will describe it not as a number but as 
an interval 

 M = {x | a ≤ x ≤ b} = [a, b], 

where a is a lower and b is an upper bound for the true value. It 
should be noted that any element of M can be the true value of the 
quantity in question. No element is distinguished and the central 
point of the interval has no special meaning. 

Let W be the true value and M the measurement interval of some 
quantity. We call M a true measurement interval, if W ∈ M; 
otherwise M is a false measurement interval. It is always possible to 
obtain true measurement intervals by expanding the interval. But 

 7



widening the interval will lower its information content. Thus the 
length L(M) of a true measurement interval M provides a measure of 
the uncertainty – or, the other way round, of the accuracy – of a 
single measurement. 

A necessary condition for a standard is independence of individual 
peculiarities, which is equivalent to reproducibility. While it is 
impossible to determine a wave onset (or offset) exactly, it is 
perfectly feasible to find lower and upper bounds for the true wave 
onset (or offset) for both the human observers and the computer 
systems. Doing so will considerably reduce the differences between 
human observers and computer systems. 

Arithmetic operations for intervals have been already defined.13 
Moreover, the set theoretical intersection of intervals may serve to 
"average" measurement intervals with the following remarkable 
properties: 

Let M1, ..., Mn be n (n ≥ 1) true measurement intervals, L(Mi) the 
length of the i-th interval, and 

( 1) 
1

n

i=

= iM M∩ . 

Then: 
(a) M  is also a true measurement interval. 
(b) M  does not depend explicitly on n. 
(c) L( M ) ≤ L( ) for i =1, ..., n. iM
(d) No specific error distribution must be assumed. 

                                                           
13 MOORE (1966); SUNAGA (1958). 

(e) M  cannot be empty (if M  = ∅, then at least one  must be 
a false measurement interval, which contradicts our 
assumption).

iM

14

 

Strategic Interval Approach Aspects in Defining a Quantity 

We have clarified the mathematical representation of the objects 
which we are about to define. That is, we have set up the formal 
concepts to be used in the definitions. The specific features of the 
interval approach require a new way of thinking in defining wave 
quantities: In measuring a quantity no longer a single value is 
searched for as an approximation for the so-called true value of the 
quantity, rather the aim is now to assess as accurate as possible a 
lower and upper bound for it. 

First of all, these bounds must be introduced in the definitions in 
such a way that the measurement intervals will be true when the 
rules of the definition are followed correctly. As mentioned above, 
true measurement intervals can be always produced by extending the 
interval length so that there is an infinite number of assessments/ 
definitions. Because we like to have interval lengths as short as 
possible, suitable margins of tolerance must be installed in the 
definitions. 

We explicate this strategy with the measurement of a deflection’s 
positive amplitude defined as the maximum value Wmax. Because of 
the noise overlapping the measured maximum Wmax

m will deviate 
from the true maximum Wmax. Assume, that there is a maximum 
noise amplitude Rb; to ensure that the true value of the amplitude 
will lie in the interval, we assume a tolerance limit ± 1.5 Rb so that 
the interval result is 

                                                           
14 JAENECKE (1982), p. 150-160. 
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 . max max[ 1.5 , 1.5 ]m m
b bW R W R= − +maxW

It may be argued that the tolerance limit can yield intervals too 
large for a useful interpretation. Such large intervals corresponds to 
what is called normally as outliers. But outliers have (in opposite to 
an averaging with the arithmetical mean) no influence to the result 
of an interval averaging according equation ( 1), as long as they 
include the true value. 
 

Computerized Versus Manual Measurement Rules 

It would be the best if the same definitions could be applied to the 
computerized as well as to the manual measurement. But 
“smoothing” a wave, e.g., is done visually by see-sawing the eyes, 
and tolerances are estimated according the rule of thumb. A 
computer system needs clear instructions for this task which are 
useless for a human observer. This reveals the fact that a 
computerized measurement is more sophisticated and therefore also 
more demanding so that the hope of definitions for the both kinds of 
measurements must be abandoned. 

If manual measurement should provide an accuracy standard, then 
the rule of thumb must be restricted by fixed operations as 
counterpart to the computerized operations. By nature they are 
complicated and cumbersomely to process. 

For practical reasons and to solve the above mentioned conflict 
with the different measurement practices, we allow the manual 
measurements therefore only a control function, i.e., we assume that 
the visual ability of a human observer suffices for yielding true 
measurement intervals and for deciding whether a computer result is 
correct, whereas the accuracy problems are considered exclusively 
as a subject for computer systems. 

Note that additional conventions are required if visually 
determined measurement intervals should meet its control function. 
For the sake of simplicity we skip here statements of particulars. 
 

Definition of Some ECG Quantities 

We restricted ourselves to give rules for computerized 
measurements; the goal is to show, how the interval approach can be 
applied. 

Any clear deviation from the base line is called a ‘deflection’. 
Whether a deflection is really an ECG wave has to be decided by 
means of minimum wave requirements after the measurement 
procedure. 

We suppose that there are already raw reference points for the 
begin and end of a deflection. These points may be the output of a 
wave recognition program; they isolate two different areas of an 
ECG lead: a deflection and a noise area. A deflection area contains a 
deflection; a noise area does no contain a deflection, i.e. it situated 
between two deflection areas. The ECG lead sections shown in the 
Figure 6 - Figure 9 represent such areas. 

Amplitudes are described by xn, or by x(n), where n (n = 1, 2, 3, ...) 
indicates a sample index. Any durations will be expressed in number 
of sample points, i.e., they follow from the difference of two indices. 
Since the sample rate is known, e.g. 2 ms, the time duration can be 
calculated directly from such a difference. 

Because outliers have no influence on the mean ( 1), absurd results 
are trapped by setting them to the worst possible value. 
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Assessment of the noise parameters 
The noise levels, Rb and Ra, are defined as the mean upper and 

lower deflection of the noise signal enlarged by a margin of safety. 

Let n1  be the reference point for the end of the preceding 
deflection and n2  the reference point for the begin of the following 
deflection, i.e., it is assumed that between sample n1  and sample n2  
there is no potential ECG wave. The samples 

2
,..., n1nx x  are 

subdivided into samples 1,...,
pnξ ξ  having a positive amplitude and 

into samples 1,...,
nnη η  having a negative one. The means are given 

by 

 
1

1 nn

a k
n k

R
n

η
=

= ∑    and   
1

1 pn

b k
p k

R
n

ξ
=

= ∑ . 

As margins of safety we use the variances 

 2

1

1 nn

a k
n kn

σ η
=

= ∑    and   2

1

1 pn

b k
p kn

σ ξ
=

= ∑  

so that the noise levels for the noise area [n1, n2] are given as 
 a a aR R σ= −    and   b b bR R σ= + . 

The signal-to-noise ratio of a deflection area 

( 2) 

2

10 210* log
n

n deflection area
SN

n
n preceding noise area

x
R

x
∈

∈

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

 

indicates the amount of noise with respect to the ECG signal. 

Assessment of the smoothing parameter 
The smoothing procedure is defined as the arithmetical mean 

( 3) 
1

1( ) ( ) , 1, ...
sm

n

sm sm
sm j n N

s n s j n N N
N = − +

= = +∑ . 

0 100 200 300 400 500 600 700 800 900
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Sample Number ( Number of Averaged Samples: Nsm = 6 )

A
m

pl
itu

de

NOISE SECTION

Rb

Ra

Original Noise Signal

Smoothed Noise Signal

It should be noted that this smoothing delays the signal at about Nsm 
samples. 

The smoothing parameter, Nsm, specifies about how much samples 
the averaging has to be performed in order to smooth the signal. It is 
defined as follows: 

Nsm is the number of samples about which a noise section has to be 
averaged in order that the smoothed noise signal lies between the 
noise levels Ra and Rb (Figure 6). 
 
 

Figure 6: Smoothed and un-smoothed noise area. Ra  and Rb  (dotted lines) are the noise levels between 
which the smoothed noise signal must lie. To reach this requirement, the original noise signal was 
averaged with Nsm = 6 samples where Nsm  is the smoothing parameter. 
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Smoothing a signal in a deflection area 

Let n1  be the reference point for the begin of a deflection and n2  
the reference point for its end, i.e., it is assumed that the samples n1  
and n2 delimit a deflection area. A signal in this area is overlapped in 
nature by noise; it has to be smoothed, therefore, before the 
measurement procedure can start, i.e., following equation ( 2) it has 
to be averaged about Nsm  samples according to 

 
1 1 1

1 2

( ) 0 , 1, ..., 1;

1( ) ( ) , 1, ...,
sm

sm
n

sm sm
sm j n N

s n n n n n N

s n s j n n N N n
N = −

= = + + −

= = + +∑ ; 

Nsm  is the smoothing parameter determined from the preceding 
noise area (see Figure 7 and Figure 8 for an example). 

 
Figure 7: Smoothed and un-smoothed deflection area. The original wave signal was averaged with Nsm 
= 6 samples where Nsm  is the smoothing parameter determined by means of the noise levels Ra  and Rb. 
The signal was generated by overlapping a noise signal with a sinus wave which should represent a 
potential biphasic ECG wave. Because the location of the sinus overlapping is known, a true value for its 
begin and end can be given (see yellow lines). 

 

Figure 8: Smoothed deflection area. It is the same signal as shown in Figure 7. 
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Assessing a lower and upper bound for deflection onset and offset 
Let be s(nmax) = Wmax the maximum and s(nmin) = Wmin the 

minimum amplitude of the signal in a deflection area. 
 

(a) Wmax > Rb (positive deflection) 

It assumed that the amplitude Wmax belongs to a positive 
deflection. At first, a raw upper bound for the begin of a deflection, 
and a raw lower one for its end have to be located. The starting point 
is in each case the maximum position nmax of the curve. From this 
position the curve is followed to the left and to the right side; the 
idea is to fix the bounds onto the curve’s first intersection points 
with the line Rb. The definitions are: 
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u
beginn /  is the raw upper bound/preliminary lower bound for 

the begin of a deflection, if 

l
beginν

    1u u
begin begin

b bn nx R and x R
−

≥ < / 2l l
begin begin

b b smkx R and x R k Nν ν −
≥ < ≥ , 

and /  is raw lower bound/preliminary upper bound for its 
end, if 

l
endn u

endν

    1l l
end end

b bn nx R and x R
−

≥ < / 2u u
end end

b b smkx R and x R k Nν ν +
≥ < ≥ . 

 

The definition of the outstanding raw lower/upper bound for the 
begin/end of a deflection is fixed onto the idea (i) to construct two 
straight lines as a surrogate for the real curve progression, and (ii) to 
use the lines’ intersection points with the base line for assessing the 
bounds (see also Figure 9): 

Given is 
R

, where 0 0

max 0

b

b

W if W R
W

W if W
>⎧

= ⎨ ≤⎩
0 max 2 bW W R= − . Let be 

g(x) a straight line passing the points 
 ( , Rl

beginν b), (nmax, W), 

then  is a raw lower bound for the begin of a deflection, if l
beginn

 ( ) 0 ( 1) 0l l
begin beging x and g x< + ≥ . 

Let be g(x) a straight line passing the points 
 (nmax, W), ( , Rl

endν b), 

then  is a raw upper bound for the end of a deflection, if u
endn

 ( 1) 0 ( ) 0u u
end endg x and g x− ≥ < . 
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Figure 9: Estimation of the lower and upper bounds for onset and offset of a deflection (see the text for 
more details). 

 

These values are raw, because no signal interferences are taken 
into account as yet in terms of margins of safety. The most 
problematical part is to find a lower bound for the onset and an 
upper bound for the offset because at these positions a deflection 
loses itself in the noise interference. This fact was already taken into 
account in part in constructing the auxiliary straight lines not from 
the maximum Wmax, rather from Wmax – 2 Rb. Additionally, we add to 
them the margins of safety smN± : 
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The onset and ofset of a deflection are given by 
  [ 3 , ]l u

begin sm beginn N n= −onsetN

and 

 . [ , 3 ]l u
end sm end smn N n N= − +offsetN

 

(b) Wmin < Ra (negative deflection) 

The onset and offset of a negative deflection can be defined in an 
analogous fashion in using the minimum s(nmin) = Wmin instead of the 
maximum s(nmax) = Wmax. 
 

(c) Wmax < Rb  or  Wmin > Ra (no deflection) 

In both cases the extrema lie within the noise levels; they are 
therefore not considered as a deflection. 
 

Assessing the amplitudes of a deflection 

In the ideal case the amplitude of a deflection is defined by its 
highest deviation from the base line. Again to this idea a margin of 
safety has to be added (see Figure 10). 
 

If Wmax > Rb, then  
 max max[ / 4, / 5]SN b SN bW R R W R R= − +posA  

is the amplitude of a positive deflection; if Wmin < Ra, then 
 min min[ / 6, / 4]SN a SN aW R R W R R= + −negA  

is the amplitude of a negative one. 
 

Figure 10: Estimation of the amplitudes from a deflection (for more details see text). 
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Onset and offset of a deflection for a lead group 

The above definitions refer to a single ECG lead. However, 
normally a lead group is simultaneously recorded, i.e., there are 
three, six, twelve or more ECG leads available showing the same 
cardiac activity, but recorded from different body surface positions. 
The electrical field propagates itself in the three-dimensional space, 
but a single electrode can only capture the electric field strength at 
one point in this space. As a consequence, one and the same 
deflection differs in these leads with respect to its amplitude and its 
onset and offset. It may be that in one lead, e.g. the P wave, is small 
and has only a short duration, whereas in another lead the same 
wave is clear formed with distinct onset and offsets. 

It seems to suggest itself to use just the latter for measurement 
purposes. Unfortunately, it is not known which of the lead will be 
the dominating one for a given deflection. In following the interval 
strategy, the earliest onset and the latest offset found in the leads of a 
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lead group must be taken as the group onset, respectively offset. The 
following definition clarifies the terms ‘earliest’ and ‘latest’: 
 

Given are from one and the same deflection the interval onsets 
  1 1 1

_ _ _ _[ , ], ..., [ , ]j j j
lb onset ub onset lb onset ub onsetn n n n= =onset onsetN N

and the interval offsets 
  1 1 1

_ _ _ _[ , ], ..., [ , ]j j j
lb offset ub offset lb offset ub offsetn n n n= =offset offsetN N

measured for j > 1 ECG leads. It is assumed that these intervals are 
true. Let be 
 _  1

_ _min( , ..., )k j
lb onset lb onset lb onsetn n n=

max( , ..., )l j
ub offset ub offset ub offsetn n n=

lead group
lb on ub onn n=onsetN

lead group
lb off ub offn n=offsetN

[ , ]lb off ub on ub off lb onn n n n= − −D

[ ,lead group A A
lb off ub offn n=offset AN

[ ,lead group B B
lb on ub onn n=onset BN

                                                          

and 
 _ . 1

_ _

Then the onset of ECG lead k is the earliest onset, and the offset of 
lead group l is the latest offset of a deflection. They define the lead 
group onset and offset as follows: 
 , _ _[ , ]lead group k k

lb onset ub onsetn n=onsetN

 . _ _[ , ]lead group l l
lb offset ub offsetn n=offsetN

This result is used for calculating the duration of a deflection. 

Note that k and l are different in general because an ECG lead 
having the earliest onset of a deflection must not have also its latest 
offset. 

Duration of a deflection and the distance between to deflections 

A duration is defined in the ideal case as the difference of two 
sample indices, where the event belonging two the last index is the 
later one. In transposing it into the interval formalism the difference 
of two intervals 
 [a2, b2] – [a1, b1] = [a2 – b1,  b2 – a1] 

is used: 
 

Let be ]  a lead group onset, and 

]  a lead group offset of a deflection, then 
its duration is given by 

_ _[ ,

_ _[ ,

 _ . _ _ _

Let be _ ]  a lead group offset of 

deflection A, and _ ] a lead group onset 
of a deflection B which is later than deflection B, then the distance 
between these deflections is given by 

_ _

_ _

 . _ _ _ _[ , ]B A B A
lb on ub off ub on lb offn n n n= − −between A and BD

 

Deciding whether or not a deflection is an ECG wave 

The following minimum wave requirements are derived from 
rather clean signals: A wave has to have at least an amplitude of Amin 
= 20 µV and a duration of dmin = 6 ms in order to be recognized 
reliably.15 These guidelines have to be alienated into the interval 
approach as follows: 

 
15 WILLEMS et al. (1983), p. 201f; (1984) p. 155. 

 14



Let D the duration of a deflection and A its amplitude. Then the 
deflection will be accepted as ECG wave, if dmin ∈ D and Amin ∈ A. 
 
 

Performance Test for the Definitions 

The measurement requirements described above are tested in 
simulating the repeated occurrence of one and the same deflection 
under different noise levels in a single lead. The true deflection is a 
sinus wave with a duration of dsinus = 270 samples. It stands for a 
biphasic ECG wave having the amplitudes Amax = +4 and Amin = – 4. 
The noise signal was calculated with a standard pseudo random 
generator. 

As is generally known, in the ideal case the ECG waves replicates 
themselves in each heart cycle. Therefore, the longer the recording 
time lasts, the more ECG waves of the same sort are available. This 
situation conforms to that in physics in which a quantity is measured 
repeatedly several times under nearly the same circumstances. The 
result is a series of measurement to which an averaging (e.g. the 
arithmetical mean) and an error estimation (e.g. the standard 
deviation) is applied. 

We simulate now this procedure with ten different tests 
characterized by its special signal-to-noise ratio. A test consists in N 
measurements in which the sinus wave is overlapped in each case 
with another noise signal of the same signal-to-noise ratio. The 
quantities to be measured are time duration as well as positive and 
negative amplitude. The N measurement results of a test are 
averaged according to equation ( 1). The results are shown in Figure 
11 and Figure 12. 
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Figure 11: Averaged time duration of a simulated single ECG lead against the signal-to-noise ratio. N 
= 2000 gives the number of measurements performed in a test. The averaging was done by intersecting 
the N  durations obtained in each measurement procedure. 
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Figure 12: Averaged amplitudes of a simulated single ECG lead against the signal-to-noise ratio. N  = 
2000 gives the number of measurements performed in a test. The averaging was done by intersecting the 
N  durations obtained in each measurement procedure. 
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Discussion of the Test Results 

The test results show that it is possible to achieve a good 
performance in using relatively simple assessments: The 
measurement intervals remains always true, even though the interval 
lengths increase as expected with a decreasing signal-to-noise ration. 

It may be argued that the simulation is based only on artificial 
signals so that the results are not very significant. But quite the 
opposite: The tests are very challenging from different reasons. 

(i) The true values of the quantities in question are known so that 
also the true error is known – a situation which is never given with 
real ECG leads, but it is very helpful for a program developer 
because he can identify now the deficiencies in his programs. 

(ii) The averaging defined as the intersection of measurement 
intervals is a very hard approach, since exactly one false interval can 
cause an empty intersection and thus a useless result. In such a way 
unexpected situations will encounter not even thought about them. 

(iii) The simulation can be done with a nearly unlimited number of 
runs which would be impossible in using real ECG leads. The large 
number of runs has a special importance in the interval approach: If 
the averaging yields an empty interval, then it is proved that at least 
one interval must be false. Unfortunately, the reverse does not hold: 
If the mean is non-empty, then it is not sure that it will be also a true 
mean. The interval length of the mean value defined by equation ( 1) 
decreases, or, at the most, remains equal, the more true  intervals are 
averaged. That means: if the measurement requirements are yet 
imperfect then the chance that it produces a false interval increases 
the more measurement intervals are averaged. 
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Figure 13: Averaged time duration of a simulated single ECG lead against the signal-to-noise ratio. 
There is the same situation as shown in Figure 11, however the number of measurements performed in 
the test is now N = 10000.  
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Figure 14: Averaged amplitudes of a simulated single ECG lead against the signal-to-noise ratio. There 
is the same situation as shown in Figure 12, however the number of measurements performed in the test 
is now N = 10000. 
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This effect is a great help for a program developer for refining his 
algorithms; it is demonstrated in Figure 11 – Figure 14. Whereas in 
case of N = 2000 all time durations are true intervals (Figure 11), 
there is in case of N = 10000 one false amplitude (Figure 14) 
indicating that the definitions are not yet ideal. The durations are 
true intervals for N = 2000 as well as for N = 10000 indicating a 
more succeeded assessment for them, but because the results are 
very similar in both case, it can be judge that the intervals can be 
shortened with a more appropriate assessment. 

In processing real ECG leads more interferences has to be 
observed. One of them is the base line drift done by respiration or 
other non-cardiac muscle activities. Therefore, the above definitions 
are not unique, and it would be feasible to conceive of another set of 
definitions to ensure true measurement intervals also in case of these 
interferences. The modified definitions have to be tested again by 
simulation. In the example above only a model for noise was used. 
In the same manner now additional models for the base line drift and 
the other interferences must be found with which artificial 
interferences can be generated for the test procedure. 

The program systems should not be applied to real ECG leads until 
the simulations could be terminated successfully. The tests by 
simulations are in a certain sense certification procedures based on 
theoretical assumptions about the signal properties. These non-
medical assumptions enter into the definitions; they are necessary 
for a program developer for his work, but they cannot be derived 
from the results of a standard ECG library. 

However, the latter can be compared now with the results from the 
simulatively certified programs. This comparison will give 
information about the quality of both the computer results and those 

obtained by human observers. It is a chance to learn from each other 
and to improve the techniques in both worlds. 

Conclusion 

Up to now there has been no consistent definition of ECG wave 
onset and offset and the wave recognition algorithms have been 
based more or less on intuitive ideas about wave onset and offset. 
Thus the contradictory results reported in the literature are not 
surprising. For example, DOBROW et al.16 report good agreement 
between visual and automated measurement, while on the other 
hand, great differences between the results of different ECG Systems 
have been described.17 It is an old statement from the measurement 
theory that measurement results are worthless, unless they are 
accompanied by some error information. We therefore replaced 
numbers by intervals in representing measurements. It can be shown 
that true measurement intervals (containing the true value as an 
element) offer the following advantages: 

(1) The discrepancies between visual and automated measurement 
can be removed. As the error information is contained in the 
measurement interval itself, the visual measurement is no longer 
needed as an accuracy standard, but only as a check against false 
measurement intervals. However, a human observer is generally able 
to decide whether an onset or offset is contained in some interval or 
not. 

(2) The influence of the individual differences between the human 
observers will be reduced. 

(3) For each measurement interval its length yields information on 
its accuracy. There are several consequences: 
                                                           
16 DOBROW et al. (1965). 
17 WILLEMS & PARDAENS (1977); NEUBERT et al. (1980), p. 432. 
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(i) Resolution and signal perturbation can be taken into account. 
(ii) The interval length provides a point of departure for further 

optimization. 

(iii) Signal perturbations will no longer cause false, but just 
imprecise results. The resulting diagnosis may be 
uninformative, but not erroneous. 

(4) Measurements and diagnoses can be uncoupled. Any 
diagnostic procedure based on the input of true measurement 
intervals should be compatible with any measurement procedure 
yielding true measurement intervals as its output. 
 

The subject matter described in this paper is an old one, but it is 
still going on. The ECG standardization efforts and the efforts in 
defining the measurement quantities show, how much preparatory 
work must be done before an operable system can be established. In 
the naïve storm and stress period of the artificial intelligence 
apparently these efforts are underestimated. This may be one reason 
why a lot of formerly high-praised systems today are felt completely 
into oblivion. 
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